The Application of ALOS/PALSAR InSAR to Measure Subsurface Penetration Depths in Deserts

نویسندگان

  • Siting Xiong
  • Jan-Peter Muller
  • Gang Li
چکیده

Spaceborne Synthetic Aperture Radar (SAR) interferometry has been utilised to acquire high-resolution Digital Elevation Models (DEMs) with wide coverage, particularly for persistently cloud-covered regions where stereophotogrammetry is hard to apply. Since the discovery of sand buried drainage systems by the Shuttle Imaging Radar-A (SIR-A) L-band mission in 1982, radar images have been exploited to map subsurface features beneath a sandy cover of extremely low loss and low bulk humidity in some hyper-arid regions such as from the Japanese Earth Resources Satellite 1 (JERS-1) and Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR). Therefore, we hypothesise that a Digital Elevation Model (DEM) derived by InSAR in hyper-arid regions is likely to represent a subsurface elevation model, especially for lower frequency radar systems, such as the L-band system (1.25 GHz). In this paper, we compare the surface appearance of radar images (L-band and C-band) with that of optical images to demonstrate their different abilities to show subsurface features. Moreover, we present an application of L-band InSAR to measure penetration depths in the eastern Sahara Desert. We demonstrate how the retrieved L-band InSAR DEM appears to be of a consistently 1–2 m lower elevation than the C-band Shuttle Radar Topography Mission (SRTM) DEM over sandy covered areas, which indicates the occurrence of penetration and confirms previous studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Penetration Depth Derived from the Synthesis of ALOS/PALSAR InSAR Data and ASTER GDEM for the Mapping of Forest Biomass

The Global Digital Elevation Model produced from stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer data (ASTER GDEM) covers land surfaces between latitudes of 83°N and 83°S. The Phased Array type L-band Synthetic Aperture Radar (PALSAR) onboard Advanced Land Observing Satellite (ALOS) collected many SAR images since it was launched on 24 January 2006. The combinati...

متن کامل

Detection of Ice Sheet Elevation and Grounding Line Using ALOS / PALSAR Data

This paper describes the research plan to use ALOS / PALSAR data for Antarctic ice sheet analysis. The final goal of our study is to extract the precise ice sheet elevation and estimate accurate position of grounding line using ALOS / PALSAR data. The authors have been studying the grounding line and ice sheet topography from InSAR data, which mainly used ERS-1/2 tandem data. We plan to adopt t...

متن کامل

ALOS−PalSAR Pol−InSAR Data Analysis: First Results

This paper presents a first calibration and quality analysis of Pol−InSAR data acquired by the ALOS−PalSAR based on deterministic and extended scatterers. The calibration of Pol−InSAR data requires the estimation and compensation of polarimeteric and interferometric system and propagation (through the ionosphere and atmosphere) induced distortions. Constant phase errors/offsets appear in the po...

متن کامل

Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-band ALOS PALSAR and X-band TerraSAR: A Case Study of Hong Kong, China

Owing to the development of spaceborne synthetic aperture radar (SAR) platforms, and in particular the increase in the availability of multi-source (multi-band and multi-resolution) data, it is now feasible to design a surface displacement monitoring application using multi-temporal SAR interferometry (MT-InSAR). Landslides have high socio-economic impacts in many countries because of potential...

متن کامل

Estimation the Movement of Glacier in the West of China with ALOS PALSAR and PRISM Data

Glaciers are sensitive indicators of climate fluctuations. The effects of climate warming are for instance evident in the continuous retreat of glaciers. In the paper, the movement of the Dongkemadi Glacier in the Qinhai-Tibetan Plateau and the Keqicar Baxi glacier motion in the Tianshan Mountains of western China are measured using two-pass differential synthetic aperture radar interferometry ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017